مهندسی بهداشت محیط

مهندسی بهداشت محیط

مهندسی بهداشت محیط، منابع ارشد و بهداشت محیط، آب و فاضلاب و بهداشت محیط، گندزداها و بهداشت محیط، مبارزه با ناقلین و بهداشت محیط
مهندسی بهداشت محیط

مهندسی بهداشت محیط

مهندسی بهداشت محیط، منابع ارشد و بهداشت محیط، آب و فاضلاب و بهداشت محیط، گندزداها و بهداشت محیط، مبارزه با ناقلین و بهداشت محیط

بویلرها

یکی از مشکلات همیشگی طراحی و نصب بویلرها، ایجاد نقشه های مربوط به خطوط لوله ها و شیر آلات متنوع و بعضا" پیچیده آن بوده است. که باعث صرف وقت و انرژی بسیار زیادی هنگام ایجاد یک نیروگاه جدید می گردد. در طرحی نو شرکت Rebis اقدام به ایجاد نرم افزار بسیار توانایی به نام AutoPlant کرده است. این نرم افزار توانا که دقیقا" جهت تسهیل کارهای طراحی و ساخت نیروگاهی طراحی شده دارای خصوصیات متعددی است که موجب آسانی کار با آن می گردد.
اساس کار این نرم افزار به این صورت است که از ابتدا طرح ها را به صورت سه بعدی پیاده سازی و مدل می نماید. تمام قطعات یک طرح دقیق و مناسب به صورت ذخیره شده در این نرم افزار موجود است و فقط باید انتخاب گردیده و در محل مناسب قرار گیرند.
امکان طراحی سه بعدی وجود هر گونه خطا از جمله برخورد خطوط لوله را به وضوح نشان داده و خطاها را تا حد زیادی تقلیل می دهد. این نرم افزار قابلیت کار با AutoCad را نیز داراست و اصطلاحا" از نوع نرم افزارهای add-on می باشد که پس از آشنایی با AutoCad کار با آن را بسیار ساده می کند.
امکان چرخاندن (Rotate) و عوض کردن دریچه دید (Viewport) و همچنین حذف خطوط پنهان (Shade) و درشت نمایی (Zoom) در آن بسیار یاری دهنده است. ایجاد مدل بویلر به این روش علاوه بر دقت، سرعت عمل را نیز بسیار بالا می برد. اما کار خارق العاده این نرم افزار از این پس صورت می گیرد و آن تهیه تمام مقاطع لازم و برش ها، تمام نقشه های ایزومتریک و پلان های دو بعدی به همراه قیمت مصالح و انواع گزارشها به صورت خودکار می باشد.
پایگاه اطلاعاتی (Database) بسیار قوی این نرم افزار را پشتیبانی می کند که اولا" باعث صرفه جویی مهندسان در وارد کردن توضیحات اضافی می گردد ثانیا" بهترین و کاملترین گزارشها را تهیه می نماید و در اسرع وقت در اختیار می گذارد.
امکان تصحیح اشتباهات و تغییر تمام لیست ها و گزارش ها و نقشه ها بر این اساس و همچنین نشأت گرفتن تمام پلان ها و نقشه ها و برش ها از یک منبع به آن ها اعتبار مضاعفی بخشیده است.
http://www.rebis.com

ارزیابی طول عمر بخشهای تحت فشار بویلر

شرکتهای اجرایی، نیازمند ارزیابی خطر شروع ترک خوردگی و انتشار آن در تجهیزات تحت فشار بویلر برای شرایط مختلف بهره برداری می باشند. برای این منظور با استفاده از نرم افزارهای کامپیوتری شرایط و وضعیت لوله ها و جمع کننده های آب را تحت دمای بالا ارزیابی می نمایند. نرم افزار تعیین عمر بویلر و شبیه سازی سیستم آن معروف به BLESS برگرفته از (Boiler Life Evaluation & Simulation System) نمونه ای از این نوع نرم افزارها می باشد که توسط مؤسسه EPRI طراحی گردیده است. این نرم افزار قادر است که شروع ترک خوردگی و رشد آنرا مدلسازی و شبیه سازی نماید.
این نرم افزار قادر است که مدت زمان لازم برای شکل گیری و شروع ترک خوردگی و همچنین رشد و انتشار آن را تا نقطه شکست و خرابی برای انواع مختلف ساختمان هندسی لوله ها و جمع کننده ها و همچنین شرایط بهره برداری محاسبه نماید.
محققان، مکانیزمهای کلی شکل گیری آسیب و همچنین محل و موقعیت آنرا در جمع کننده ها تشخیص داده اند. آنها با استفاده از مجموعه اطلاعات میدانی، و تحلیل نتایج آزمایشهای غیر مخرب و همچنین آزمایشهای متالوگرافی توانسته اند بدین نتایج دست یابند.
با توجه به اینکه خزش و خستگی ناشی از خزش بعنوان اساس مکانیزم شروع آسیب تشخیص داده است، بر همین اساس مدلهای ساده ای را برای تحلیل تنش و همچنین مدلهائی را برای شروع ترک خوردگی و انتشار آن بدست آورده شد که همگی آنها در نرم افزار BLESS مدلسازی گردیده اند.
ترک خوردگی در حفره های مفاصل، بعنوان یک مشکل اساسی در جمع کننده ها ظاهر شده است. علت اصلی این ترک خوردگی آسیب ناشی از خستگی خزش است که شکاف اکسیدی ایجاد شده بواسطه بهره برداری دوره ای در شکل گیری آن کمک می نماید.
بررسی اطلاعات جمع آوری شده نشان داده است که جمع کننده های خروجی سوپر هیترهای ثانویه و همچنین شکل هندسی خاص مفاصل و رابطها، آمادگی بیشتری برای شروع ترک خوردگی داشته اند.
ترک خوردگی نسبتا در اوایل عمر جمع کننده ها (پبیشتر از 50% عمر کلپ) آغاز می گردد و سپس در طی چند سال رفته رفته منتشر می شود.
نمایش و نظارت میدانی نشان داده است که درجه حرارتی محلی فلز و نرخ افزایش آن در حوزه های لوله می توانند بعنوان عامل جدی تر از اندازه گیری شرایط بخار برای تشخیص شروع ترک خوردگی در نظر گرفته شوند. براساس این مشاهدات، توانسته اند مکانیزم تنش، خستگی خزش، شروع ترک خوردگی و نحوه انتشار آن را در نرم افزار BLESS مدلسازی و پیاده نمایند.
علیرغم اینکه مشکل ترک خوردگی در قسمت مفاصل و رابطها در نیروگاههای اروپا و آمریکا بسیار رایج می باشد، اما روش تشریح شده برای تشخیص و نرم افزار مذکور اولین روش علمی و کمی برای تشخیص یک چنین ترک خوردگی هایی می باشد. با توجه به رشد کند ترک خوردگی در طی یک دوره طولانی، روشهای بازرسی می توانند مؤثر باشند.
منابع:

Excutive Summary, Materials, Bless Code User Manua, European Replica Data Base Evaluation, Guidelines for MDE of Heavy Section Components, Super heoter / Reheater Tubes
مؤسسه تحقیقاتی EPRI - آمریکا http://www.epri.com

کویل های سرمایش در هواساز و فن کوئل

یک کویل سرمایش خاص بر این اساس انتخاب می شود که با توجه به بارهای سرمایش محسوس ، نهان و کل که برای فضای مورد نظر محاسبه شده اند و با توجه به شرایط هوا در هنگام ورود به کویل ، کویل انتخابی قادر باشد در هنگام عبور هوا از درون خود تاثیرات مطلوب و مورد نظر را بر آن بگذارد. در عین حال انتخاب نهایی مشخص کننده میزان جریان آب سرد مورد نیاز، افت فشار این جریان و درجه حرارت موردن یاز آب سرد ورودی می باشد و در حالتهایی که از کویل انبساط مستقیم استفاده می شود نمایانگر درجه حرارت سیال مبرد نیز خواهد بود.
لذا در هنگام انتخاب کویل بایستی عملکرد سمت آب سرد کننده یا سیال مبرد نیز مورد توجه واقع شود.، همانگونه که عملکرد سرعت هوا مدنظر قرار می گیرد .
بنابراین انتخاب هر کویلی دارای دو واقعیت است که امکان دارد مستقل از یکدیگر مورد توجه واقع شوند. عملکردهای سمت هوا و سیال مبرد را بایستی مستقل از یکدیگر مد نظر قرار داد و در نهایت انتخابی بهینه از نظر اقتصادی را فراهم نمود. استفاده از روش نقطه شبنم دستگاه در هنگام انتخاب کویل، به معنای سازگاری عملکردهای سمت هوا و سمت سیال مبرد می باشد .

مفهوم عبارت ( دو – مرحله ) در هنگام انتخاب کویل در زیر بیان شده است :
1- بر اساس ضریب بای پسی که توسط شرایط هوا تعیین و تحمیل شده کویلی را که تعداد ردیف ها و فضای بین پره آن مشخص است بطور آزمایشی انتخاب کنید.
2- با استفاده از نقطه شبنم دستگاه که در مرحله 1 بدست آمد ، عملکرد سمت سیال مبرد را تعیین کنید . تعیین این عملکرد محتاج به یافتن درجه حرارت موردنیاز سیال مبرد در هنگامی که از کویلهای انبساط مستقیم استفاده می شود و یا یافتن مقدار آّ سرد شده و درجه حرارت آن و افت فشار حاصله در هنگامی که از کویلهای آبی استفاده گردد ، می باشد.
بنابراین می توان بدون توجه به انتخاب نهایی دستگاه برودنی ، کویل را بطور آزمایشی انتخاب کرد . اگر با اولین انتخاب کویل ، عملکرد سمت سیال مبرد رضایتبخش نباشد بایستی کویل دیگری را که دارای عملکرد مناسبی در سمت هوا است، امتحان کرد . با انتخاب بهینه ، از دستیابی به عملکرد و هزینه عملیاتی مناسب اطمینان حاصل می شود.

غالبا در کاربردهای چند منطقه ای ، نقطه شبنم دستگاه در فضاهای مختلف تفاوت می کند . اگر چه هزینه سیستم توسط نقطه شبنم پایین وسایل اطاق نظیر شبنم کویل ، مشخص می شود ، ولی نقطه شبنم بالاتری را می توان انتخاب کرد و یک مصالحه قابل قبولی بین رطوبت نسبی اطاق در شرایط طراحی با درجه حرارت نقطه شبنم پایین تر ایجاد نمود.

مقدار افزایش رطوبت نسبی بوسیله کاهش درجه حرارت نقطه شبنم پایین تر ایجاد نمود.
مقدار افزایش رطوبت نسبی بوسیله کاهش درجه حرارت حساب خشک جبران خواهد شد .
در مورد اطاق کنفرانس که بار نهان آن نسبتا زیاد است امکان دارد اتخاذ چنین تصمیمی لازم باشد. اگر برای این کاربرد چنین مصلحتی غیر قابل قبول است. می توان با مجهز کردن این فضای خاص به سیستم جداگانه به حداکثر جنبه اقتصادی دست یافت.
استفاده مستقیم یا استنتاجی از یکی از دو روش ، همراه با مواجه با دسته بندیهای گوناگون کویل و تکنیکهای انتخاب کویل خواهد بود. این روش ها، روش نقطه شبنم دستگاه ( درجه حرارت موثر سطح) و روش اطلاعات اساسی تصحیح شده می باشند .
روش دومی در ارتباط با محاسبه عملکرد کویل از روی معادلات و اطلاعات اساسی انتقال حرارت است ، با آمیختن تعیین عملکرد سمت هوا و عملکرد سمت سیال مبرد، این روش تبدیل به یک عمل خواهد شد . در عین حال روش اطلاعات اساسی محتاج به فرضهایی است که همیشه بعد از انتخاب کردن تجهیزات اصلاح می گردد . و بنابراین یک روش سعی و خطا خواهد بود. ممکن است تعداد ردیف های کویل که نتیجه محاسبات است ، اعشاری باشد که بایستی به عدد صحیح تبدیل شود، و این به نوبه خود باعث لزوم محاسبه مجدد عملکرد می گردد . روش نقطه شبنم دستگاه استنتاج شده از مفهوم ( دو – مرحله) در انتخاب کویل و پارامترهای مورد نیاز آن است .

ردیف های کویل بدست آمده تنها ناشی از بررسی ارقام صحیح واستاندارد ردیف های کویل می باشد.
نمودارهای مختلفی هستند که برای ارزیابی عملکرد سمت هوای کویلهای سرمایش استفاده می شوند، برای استفاده از این نمودارها بایستی با شرایط ورودی و خروجی هوا وارد آنها شد . عملکرد حاصل از نمودارهای مذکور بر اساس ضریب بای پس کویل و نقطه شبنم دستگاه خواهد بود.
یک زاویه قائمه را که در درجه حرارت حباب خشک ورودی ثابت شده و حول آن می چرخد در نظر بگیرید . با چرخاندن این زاویه قائمه از تقاطع های گوناگون ضریب بای پس کویل و خط ارتباطی بین درجه حرارت حباب تر هوای ورودی و خروجی عبور کنید، ضریب بای پس حاصل نمایانگر ضریب بای پس است که درجه حرارت حباب خشک را برآورده می سازد . نقطه شبنم دستگاه را می توان در نقطه تقاطع انتخابی خواند .
وقتی ضریب بای پس یک کویل مشخص نباشد، عملکرد کویل را می توان در روی نمودار رسم کرد و ضریب بای پس را در محل تقاطع خط ارتباطی بین درجه حرارتهای حباب تر ورودی و خروجی با خط ارتباطی بین درجه حرارتهای حباب خشک ورودی و خروجی خواند . بنابراین میتوان مستقیما ضرایب بای پس کویلهای مختلف را با یکدیگر مقایسه نمود.
هنگامی که انتخاب کویل سرمایش بعد از تهیه فرم تخمین بار تهویه مطبوع صورت گیرد، ضریب بای پس کویل انتخابی بایستی تا حد معقولی با ضریب بای پس تخمین زده شده در فرم مطابقت داشته باشد . اگر این تطابق وجود نداشته باشد بایستی ضریب بای پس را مجددا تخمین زد .

نحوه رفع سختی آب

آب سخت آبی است که حاوی نمک‌ های معدنی از قبیل ترکیبات کربنات‌های هیدروژنی، کلسیم، منیزیم و ... است. سختی آب بر دو نوع است: دایمی و موقت.
تغییرات سختی آب بر حسب آنکه آب در موقع نفوذ در زمین از قشرهای آهکی و منیزیمی و گچی گذشته و یا نگذشته باشد، کم یا زیاد می‌شود. آبهای نواحی آهکی، سختی زیادتری تا آبهای نواحی گرانیتی و یا شنی دارند. سختی آب در عرض سال هم ممکن است تغییر نماید. معمولاً سختی آبها در فصل باران کم و در فصل خشکی زیاد می‌شود.
مضرات آب سخت:
آب سخت برای مصرف در کارخانجات مناسب نیست. از مضرات آن ایجاد قشر آهکی بر روی جداره دیگ و خوردگی آن می شود.
سختی آب، عامل تشکیل رسوب در دیگهای بخار، مبدلهای حرارتی، برجهای خنک کننده و سیستمهای سرد کننده می باشد. اگر آب سخت برای شستشو به کار رود، صابون هدر می رود. در صنایع نساجی و رنگرزی کیفیت رنگ افت می کند. انحلال سود سوز آور در آب، منیزیم را به صورت هیدروکسید منیزیم رسوب می دهد. سختی بیش از حد باعث سوء هاضمه و بروز بیماریهای کلیوی می شود.
جهت رفع سختی آب، تعداد زیادی مواد شیمیایی موجود است، که دارای کربنات سدیم هستند. این مواد را قبل از ورود آب، به دیگ ها اضافه می کنند. که باعث گرفتن سختی آب می شود. و یا در دیگ بر اثر افزودن این مواد، آهک و گچ را رسوب می‌دهند (باعث شناور شدن رسوب در آب دیگ می شود) و دیگر این رسوب، محکم به جدار دیگ نمی‌چسبد بطوری که می‌توان آنرا به آسانی پاک نمود.
البته به یاد داشته باشید جهت خروج این رسوبات معلق شده در دیگ باید طبق یک برنامه زمان بندی شده و منظم اقداماتی از جمله زیرآب زدن به صورت مداوم تکرار شود. (درصورت درخواست تمایل به آگاهی از این برنامه زمانبندی، جهت خروج این مواد معلق و همچنین تهیه این مواد و دریافت مشاوره بیشتر با شرکت بخارپویان تماس حاصل فرمایید.)

سختی زدایی
برای برطرف کردن سختی موقت آب، با جوشاندن آن کربنات‌ های هیدروژن محلول، به کلسیم نامحلول تبدیل شده و تشکیل رسوب می‌دهند. این رسوب در مناطق دارای آب سخت، درون دیگ ها دیده‌ می‌شود. سختی دایمی آب را می‌توان با کمک نرم‌ کننده‌های تبادل کننده یون، مانند پرموتیت برطرف کرد. آبی که در طبیعت وجود دارد تقریباً همیشه ناخالص می‌باشد. زیرا اغلب دارای گچ، آهک، نمک طعام، ترکیبات منیزیم، آهن، اکسیژن و ازت، انیدرید کربنیک، ترکیبات آلی و غیره است، مقدار این ناخالصی ها در آبهای مناطق مختلف متفاوت است.
یکی از اجسام گیرنده سختی آب تری ناتریم فسفات Na3PO می‌باشد، که با اسم آلبرت ‌تری بکار می‌رود. یون کلسیم موجود در آب بر اثر ناتریم فسفات تبدیل به تری کلسیم فسفات PO42Ca3 می‌گردد و رسوب می‌نماید.
بر اثر پختن بی‌کربنات، کلسیم آب تبدیل به کربنات می‌شود و رسوب می‌نماید، (Ca3H2Ca → CO3Ca + CO2 + H2O) و بی کربنات کلسیم آب، بر اثر کربنات سدیم، گچ و بی‌کربنات کلسیم، به کربنات کلسیم تبدیل می‌شود و رسوب می‌گردد:
Ca3H2Ca + CO3Na2 → CO3Ca + 2CO3HNa
SO4Ca + CO3Na2 → CO3Ca + SO4Na2
اخیرا به مقدار زیاد از رزین ها که قادرند تعویض یون کنند، برای رفع سختی آب استفاده می‌کنند. رزین لواتیت در آلمان و آمبرلیت و دووکس در آمریکا استعمال می‌گردد.
درجه سختی آب:
درجه سختی آب را از روی مقدار کلسیم و منیزیم موجود در آن تعیین می‌کنند.
در آلمان اگر آبی ده میلی گرم CaO در یک لیتر داشته باشد می‌گویند درجه سختی آب یک است.
در فرانسه اگر آبی در یک لیتر ده میلی گرم کربنات کلسیم یا همسنگ آن کربنات منیزیم داشته باشد می‌گویند که یک درجه سختی دارد.
در انگلستان اگر آبی ده میلی گرم کربنات کلسیم و یا همسنگ آن کربنات منیزیم در ۰.۷ لیتر داشته باشد یک درجه سختی دارد.
برای تعیین سریع سختی آب، کارخانه شیمیایی واقع در آلمان قرصهایی ساخته است. در یک لوله آزمایش مخصوص و مدرج، آب مورد آزمایش را تا خط نشان لوله پر می‌نمایند، و به‌ وسیله معرفی که همراه بسته قرصهاست رنگ این آب را قرمز می‌کنند و آگاه آنقدر از این قرصها در آن می ‌اندازند تا رنگ آب سبز گردد. شماره قرصهای ریخته شده در لوله آزمایش برابر درجه سختی آب می‌باشد. دقت این روش تا نیم درجه است. در ایران معمولا از کیت های خاصی استفاده می شود. (جهت دریافت این کیتها با بخارپویان تماس حاصل فرمایید)
سختی گیر:
سختی گیری برای جدا کردن دو عنصر کلسیم و منیزیم بکار میرود. اگر این دو عنصر از آب جدا نشوند، همان اتفاقی در دیگ بخار می‌افتد که در کتری رخ می‌دهد. در واقع رسوبات، سطح بین لوله های آتش خوار با آب را کاهش می دهد و انرژی بیشتری برای تولید میزان معینی فشار مصرف می‌شود. همچنین پاکسازی این لوله ها علاوه بر هزینه بر بودن خط تولید را نیز متوقف می‌کند.
این بخش از دو مخزن تشکیل می‌شود، مخزن اول شامل بافت رزین سه ‌بعدی بوده که با منیزیم ترکیب شده RMg بوجود می‌آورد در نتیجه سختی آب از بین می‌رود ولی نمی‌توان آن را به فاضلاب هدایت کرد. چون رزین از دست خواهد رفت. سپس مخزن دوم به عنوان مخزن احیا استفاده می شود. در این مخزن آب‌ نمک وجود دارد. واکنشهای به صورت زیر انجام می‌شود. (واکنش زیر، با ترکیب رزین و منیزیم انجام می گیرد).

واکنش اول : MgSo4 + R ---> RMg + So4
واکنش دوم : NaCl + RMg + So4 ---> RNa + MgCl2
اکنون آب وارد مخزن نمک شده، و RNa مجددا با سولفات منیزیم تر کیب شده و تولید RMg می‌نماید. که با انجام چرخه‌ایی این واکنش ‌ها، رزین مجددا احیا شده و از چرخه احیا خارج می‌شود.
اکنون سختی آب گرفته شده. ولی برای وارد شدن به داخل دیگ باز مشکلاتی وجود دارد.
لازم به ذکر است همان گونه که بیان شد، دستگاه سختی گیر تنها قادر به جداسازی دو عنصر مضر کلسیم و منیزم است. جهت جداسازی دیگر عنصرها از آب دیگ بخار و تاسیسات، تدابیر دیگری باید در نظر گرفت.(جهت دریافت اطلاعات در این خصوص با بخارپویان تماس حاصل فرمایید)
لازم به یادآوری می باشد، در زمان تولید در کارخانه و کارکرد مداوم دیگ بخار، ممکن است بیش از ظرفیت سختی گیر آب مصرفی از آنها عبور کند، که مسلما تمامی املاح کلسیم و فسفر به قطع فیلتر و جداسازی نمی شود. در این صورت تدبیر ثمر بخش موادی است که املاح منیزم و کلسیمی که فیلتر نمی شوند را، در آب جوش به هنگام کار دائم دیگ بخار به صورت غیر قابل رسوب در می آورد، و مانع چسبیدن آنها به سطح فلز مخزن آب، روی لوله ها و کوره می شود. که با قیمت بسیار ارزانی در دسترس می باشند. و با اضافه نمودن آنها به آب مصرفی دیگ بخار و درین های (زیرآب زنی) مرتب طبق آزمایش های لازم آب ورودی دیگ، این املاح معلق و نچسب به هرز آب فرستاده می شود. (جهت دریافت این مواد با بخارپویان تماس حاصل فرمایید)
شهرهای با آب سخت:
اکثر شهر های ایران و البته شهر های قم، زاهدان، دلیجان، ساوه، سمنان و... از شهرهایی هستند که آب آنها از سختی بالایی برخوردار است. بدیهی است که، رفع سختی آب از وظایف بسیار مهم اپراتور در طول نگهداری روزانه و شیفت کاری است، و به جهت جلوگیری از صدمات مخرب و گاهی غیر قابل جبران و مصیبت بار بعدی که در مدت کوتاهی به سیستم تاسیسات وارد می گردد تدبیر لازم با هزینه ای بسیار اندک در قبال تاسیساتی حرارتی که به قطع قسمتی حیاتی برای تولید مداوم و مستمر است، اتخاذ گردد. جهت کسب اطلاعات بیشتر با واحد شیمی آب بخارپویان بخار تماس حاصل فرمایید. اما لازم است که سختی آب در تمامی کارخانه جات سراسر کشور به صورت دوره ای و تحت نظارت متخصصان این بخش کنترل گردد. تا از بروز هزینه های هنگفت در آینده ای بسیار نزدیک جلوگیری شود.

تاریخچه آبرسانی

اولین ملتها به تقلید از طبیعت با استفاده از کندن زمین به صورت کانال شروع به آبرسانی نمودند. قنات یا کاریز از شیوه های بسیار قدیمی در آبرسانی است که هنوز در ایران مورد استفاده است. چینی ها، بابلی ها، هندی ها، ایرانیان و مصریان از جمله قدیمی ترین ملت ها در زمینه استفاده از شبکه آبرسانی هستند.
امروزه جای خوشبختی است که در اکثر شهرها آب سالم غالبا به مقدار کافی و با فشار مطلوب در دسترس است. اگر چنین نباشد. علاوه بر افزایش نارضایتی عمومی سطح بهداشت و رفاه جامعه به شدت کاهش
می یابد.
و همچنین به علت تمرکز روز افزون مردم در شهرها از یک سو و گسترش صنایع از سوی دیگر لازم
می سازد که فن آبرسانی شهرها مانند هر فن دیگری در حال تکامل باشد. لذا آگاهی مهندس طراح یک شبکه آبرسانی شهری بر آنچه که در این زمینه در دنیا رخ می دهد بسیار لازم است.
همچنین دسترسی به آب در مناطق مختلف شهری تحت الگوهای مصرف متفاوت و با مخازن مختلف السطح تامین آب برای نیاز اضطراری آتش نشانی وضعیت شبکه های موجود آبرسانی به مناطق تحت توسعه شهری یا صنعتی از جمله مشکلاتی هستند که برای حل آنها نیاز به درک صحیح رفتار هیدرولیکی شکبه ها است.

تعریف یک شبکه آب رسانی
یک شبکه آبرسانی عبارت است از مجموعه ای وسیع از یک سری لوله که به وسیله اتصالاتی نظیر سه راهی،زانویی،تبدیل و... به هم متصل می شوند،به طوری که با ورود آب از یک نقطه،از نقاط دیگر قابل برداشت باشد.
طراحی یک شبکه آبرسانی مستلزم انتخاب قطر مناسب جهت هر یک از لوله های شبکه است.این انتخاب باید به گونه ای باشد که کلیه پارامتر های مهم شبکه از قبیل فشار،سرعت و ... در محدوده مشخص برآورده گردند.
به طور کلی در محاسبات مربوط به حلقه های یک شبکه آبرسانی دو تیپ مختلف از معادلات مورد استفاده قرار می گیرند.

1_معادلات پیوستگی جریان
2_معادلات انرژی
اساس معادلات پیوستگی جریان بر این اصل استوار است که دبی ورودی یک گره باید با دبی خروجی از آن برابر باشد.اساس معادلات انرژی نیز بر این اصل استوار است که جمع جبری افت فشار های خالص نظیر ارتفاع برای هر حلقه از شبکه باید برابر صفر باشد.

با توجه به توضیحات فوق می توان نتیجه گرفت که:
1_برای هر گره از شبکه و به منظور متوازن نمودن مقادیر فشار مربوط به آن می توان یک معادله پیوستگی نوشت.
2_برای هر حلقه از شبکه و به منظور متوازن نمودن مقادیر فشار مربوط به آن میتوان یک معادله انرژی نوشت.
معادلات اساسی که در طراحی شبکه آبرسانی کاربرد دارند،معادلات دارسی ویسباخ و هیزن ویلیامز و برنولی می باشد.

سختی گیرهای الکترونیکی

آب مهمترین سیال در حرارت و برودت است که وظیفه انتقال گرما در مبدلهای حرارتی را به عهده دارد . در برجهای خنک کن ، بویلرها و چیلرها از آب به عنوان مایع مبدل استفاده می شود بطوریکه گردش آب موجب تبادل حرارتی میگردد . معمولا آب استفاده شده در کاربردهای حرارتی و برودتی از نوع آب سخت است ، آبهای سخت تشکیل پوسته کربنات کلسیم می دهند که مشکلات متعددی را بوجود می آورد . این پوسته به شکل رسوب بر روی سطوح داخلی لوله های حامل آب باعث کاهش ظرفیت انتقال جریان آب و انتقال جریان حرارت می شود.
هنگامی که آبهای سخت حرارت داده میشوند تشکیل پوسته خیلی سریعتر انجام می گیرد که مشکلات زیادی را در بویلرها و آبگرمکن ها به وجود می آورند یک پوسته به قطر یک میلیمتر بر روی سطوح گرم کننده یک آب گرم کن بصورت عایق حرارتی عمل کرده و در نتیجه تقریباً %10 افزایش هزینه به وجود خواهد آمد.
تشکیل رسوب در جدارها و دیوارها باعث آسیبهای فراوانی به تأسیسات حرارتی و برودتی میشود که مهمترین آنها کاهش بازدهی مبدلها و در نتیجه افزایش انرژی راهبردی است .آنالیز شیمیایی رسوب نشان میدهد که ترکیب اصلی تشکیل دهنده کربنات کلسیم ، سولفات کلسیم ، سولفات باریم ، سیلیکا و آهن است که در صد فراوانی کربنات کلسیم بیشتر از ترکیبات دیگر می باشد.

مقاومت حرارتی کربنات کلسیم بسیار زیاد بوده و در صورت تشکیل رسوب همان طور که اشاره کردیم در دیواره ها نقش یک عایق را بازی میکند که این امر نقش بسزایی را در کاهش بازدهی مبدلهای حرارتی دارد. اگر بتوان از تشکیل کربنات کلسیم در جداره مبدلهای حرارتی جلوگیری کرد روند کاهش بازدهی با گذشت زمان متوقف میشود .

معمولاً کاتیونهای کلسیم و منیزیم در آب عامل رسوب هستند کاتیون کلسیم صرفنظر از نمک های آن که شامل سولفات کلسیم ، کلروکلسیم و سایر نمکهای کلسیم می شود سختی کلسیم را تشکیل میدهند .همانطور کاتیون منیزیم باعث سختی منیزیم می گردد و چون عامل اصلی سختی آب ترکیبات معدنی این دو عنصر است لذا بطور کامل فرض می گردد که سختی کل آب از سبک کردن به کمک آب آهک و خاکستر کربنات سدیم و سبک کردن با استفاده از مبادله کننده های یونی به وجود می آید. به رسوب و عوامل ایجاد آن در ادامه به صورت کامل پرداخته می شود.
تا کنون روشهای مختلفی برای مقابله با این مسئله پیشنهاد شده است در روشهای معمول از مواد افزودنی شیمیایی استفاده می شود که علاوه بر پایین بودن بازدهی مشکلات زیست محیطی نیز ایجاد می گردد. روشهای بهتر دیگری مانند الکترو دیالیز ، تقطیر ، انجماد و اسمز معکوس وجود دارد که به علت پیچیدگی وگران بودن فقط در شرایط خاص بکار برده میشوند.
در حال حاضر سختی گیری و رسوب زدایی الکترونیکی به عنوان یک روش غیر شیمیایی و بدون نیاز به مواد شیمیایی افزودنی به آب و سازگار با محیط زیست با خواص بسیار مفید دیگر برای صنایع مختلف همواره به عنوان جایگزین مناسبی برای روش های پیشین مطرح است.
سختی گیری، پالایش الکترونیکی آب است علی رغم کیفیت کارکردی مناسب و مزایای فراوان به علت ضعف در تحلیل عملکرد از دیدگاه تئوری های فیزیکی و شیمیایی نفوذ آن در بازارهای تجاری چشمگیر نبوده است .اما در چند سال گذشته با تحقیقات وسیعی که در سطوح دانشگاهی و مراکز تحقیقاتی انجام شده است روشهای الکترومغناطیسی جایگزین مواد مغناطیسی گذشته شده است . همچنین تئوریهای قابل قبولی نیز ارائه شده که این امر چشم انداز بسیار مناسبی برای این تکنولوژی سودمند ترسیم نموده است.